Log x 1 2x 5 log 2x-5 x+1 2. Решение лог уравнений. Log3 x+log корень 3 +log 1/8 x =6. Log 2 x 1 4x 5. Решите неравенство log 1/2 x+3 -2.
Log _(x-1)(2x)>=1. Log_4(3х-4)=log_4(x+1). (log 1/4x)^2-2*log 1/4 x=8. (-x+1)^5/4 < x^4/5 + 1. Log4x= -2 решение.
Решение уравнение log3(3x+2)=log3(x+4) решения. Log 2 x 1 4x 5. Log2 x log2 x-3 +1 log2 x 2-3x. Найдите корень уравнения log3(4 - x) = 4. Log 2 x 1 4x 5.
Log2 4. Log 1/2 x. Решение уравнения log x (х^3-5х+7) =3. Log 2 x 1 4x 5. Log4(x-2)<2.
Log 2 x 1 4x 5. Log 2 x 1 4x 5. Log5 x/2 = log 0,2 (x+1). Log1 2 3 5х 3. Решение log уравнений.
Решить уравнение log. Log 2 x 1 4x 5. Решить уравнение log1\2 5x-1==-2. Log 2 x 1 4x 5. 3log1/2x+5log1/2x-2.
Log4–x (x+1) / (x-4)4 ≥ -4. Log5 4+x 2. Log2 2 x-log2 x-2=0. Log2x x 2 x 2 1. Log3(x2-5x+4)-log3(x-4)=2.
Решить уравнение log. Решить логарифмическое уравнение: log_2 ( 4 x + 3 ) + log_2 ( 1 - 2 x ) = 1. 4log5 x-2 +1/log5 2 x-2 +log5 x-2. Log 2 x 1 4x 5. Log8 x2 4x 3 меньше 1.
Log2x-log3x=5. Log2 x 5 log2 x+2 3. Log x 8=-3/4 решение. Log(x+1)+log(2x+4/x+1. 2log4 4 x 4-log2 x-2.
Log 2 x 1 4x 5. Log 2 x 1 4x 5. 4log5 x-2 +1/log5 2 x-2 +log5 x-2. Log 2 x 1 4x 5. Log4(x^2+4x-5).
2log5x log корень x x-log1/5x 8. Логарифмические уравнения log1/2 + log3. Log 4(1- 2x)=2 log 78. Log 2 x 1 4x 5. Log2(log2x)=1.
Log2 x 5 log2 x+2 3. Лог 4(2 x - 1) \ x - 1. Решить неравенство log4(x-2)<2. Log 2 x 1 4x 5. Log5 (x 2 -4x) >1.
5^x-log2(x). Log2 4. Log4-x -5-x/x-4 -1. Решить уравнение log. Log 2 x 1 4x 5.
Log 2 x 1 4x 5. Log2(x+1)=4. Решение log уравнений. Log4x>1. Log4(x-2)<2.
Log5x=2. Логарифмические уравнения lg. (log2 log2x 3 + 1) / log 2 x 2 - log2 4x. Log4x=2. Log4x= -2 решение.
Метод введения новой переменной логарифмические уравнения. Log (x^2-2x+1)《0 с переменным основанием. Log 2 x 1 4x 5. Log 4 (2x-1)/x+1 < -1/2. Log2x=log4x2.
Log 2 x 1 4x 5. Log1|2(x2-8x)=2. Логарифмические уравнения log3(5x\2)=1. Лог 1/2 4. Log 2 x 1 4x 5.
Log 2 x 1 4x 5. Решить неравенство log3 x+2 3. Log 4(x+1)=1. 2log2(x5–√)−log2(x1−x)≤log2(5x2+1x−2). Лог 2 х-3 х+5 лог 2 х-3 х+5 2.
Решите неравенство log. 4. Log2 x 2 4 3 log2 x+2/x-2. Найдите корень уравнения: log (5 - x) = 2. Log (x^2 - 6x +22) по основанию 1/5.
Введение новой переменной логарифмических уравнений. Log0,2(x^2+4x)=-1. Решение log уравнений. Log x 1 2x 5 log 2x-5 x+1 2. Log 4 (2x-1)/x+1 < -1/2.